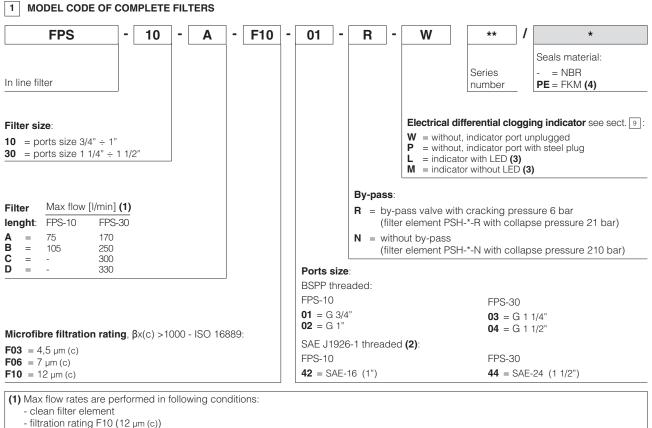


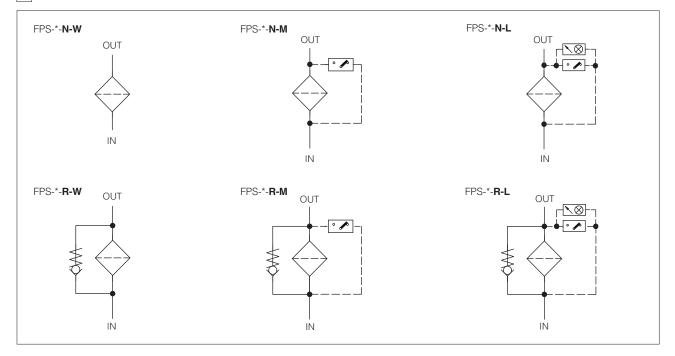
In line filters type FPS


Threaded ports - max flow 330 l/min, max pressure 320 bar

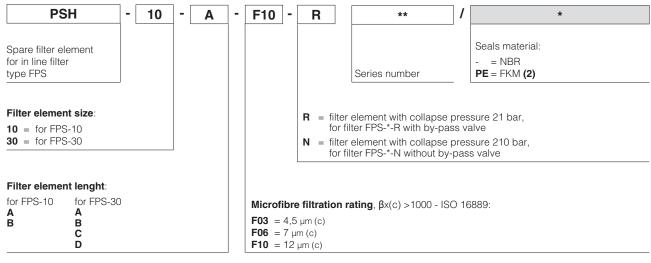
FPS in line filters are designed to protect the whole hydraulic circuit or a single valve from contamination present in the working fluid. They are particularly recommended for systems with proportional valves.

FPS filters are available with following features:

- two head sizes with BSPP or SAE threaded ports, from 3/4" to 1 1/2"
- max working pressure 320 bar
- four filter lengths with max flow 330 l/min
- without or with by-pass valve with cracking pressure 6 bar
- microfibre filter element with filtration rating 4,5 7 12 $\mu m(c)$ (βx (c) >1000, ISO 16889). Collapse pressure 21 bar for filters equipped with by-pass valve or 210 bar for filters without by-pass
- without or with electrical differential clogging indicator with optional led


- largest port size

- option /R, filter element with collapse pressure 21 bar
- $-\Delta p = 1$ bar
- mineral oil with viscosity 32 mm²/s


In case of different conditions the max flow rates have to be recalculated - see section 10

- (2) Filters with SAE threaded ports are available on request
- (a) The clogging indicator is supplied disassembled from the filter. The indicator port on filter head is plugged with plastic plug
- (4) Filters with FKM seals are available on request

2 HYDRAULIC SYMBOLS (representation according to ISO 1219-1)

3 MODEL CODE OF FILTER ELEMENTS - only for spare (1)

(1) Select the filter element according to the model code reported on the filter nameplate, see section 14.1

(2) Filters element with FKM seals are available on request

4 MODEL CODE OF ELECTRICAL DIFFERENTIAL CLOGGING INDICATORS - only for spare

CID	-	E05	-	М		**]/	*
Spare electrical differential clogging indicator for in line filter						Series number		Seals material: - = NBR PE = FKM
 Differential switching pressure: E05 = 5 bar for filters with by-pass valve E08 = 8 bar for filters without by-pass valve 				L = v	vith L	ED for visual indicati ED ut LED	on:	

5 GENERAL CHARACTERISTICS

Assembly position / location		/ertical position with the bowl downward					
Ambient temperature range		Standard = $-20^{\circ}C \div +70^{\circ}C$ /PE option = $-20^{\circ}C \div +70^{\circ}C$					
Storage temperature range		Standard = $-20^{\circ}C \div +80^{\circ}C$ /PE option = $-20^{\circ}C \div +80^{\circ}C$					
Materials	Filter head	Cast iron					
	Filter bowl	Steel					
Surface protection		Phosphatized					
Fatigue strength		min. 1 x 10 ⁶ cycles at 320 bar					

6 HYDRAULICS CHARACTERISTICS

Filter size		10 30							
Port size code		01 02 42 03 04							
Port dimension	BSPP threaded	G3/4"	G1"		G1 1/4"	G1 1/2"			
Port dimension	SAE J1926-1 threaded			SAE-16			SAE-24		
Max operating	oressure (bar)	32	20						
Max flow (1)	R = filter with by-pass	60 ÷ 80	75 ÷ 105	60 ÷ 80	165 ÷ 305	170 ÷ 330	170 ÷ 330		
(l/min)	N = filter without by-pass	55 ÷ 75	65 ÷ 90	55 ÷ 75	145 ÷ 245	150 ÷ 260	150 ÷ 260		
Direction of filtra	ation	See the arrow on the filter head							

(1) Max flow rates are performed in following conditions:

- clean filter element

- filtration rating F10 (12 µm (c))

- Δp 1 bar

- min ÷ max filter lenght

- mineral oil with viscosity 32 mm²/s

In case of different conditions the max flow rates have to be recalculated - see section 10

7 FILTER ELEMENTS

Material		Inorganic microfibre					
	F03	β _{4,5µm (c)} ≥1000					
per ISO16889	F06	β _{7,5μm (c)} ≥1000					
	F10	β _{12µm (c)} ≥1000					
Filter element	R = for filter with by-pass valve	21 bar					
collapse pressure	\mathbf{N} = for filter without by-pass valve	210 bar					

8 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

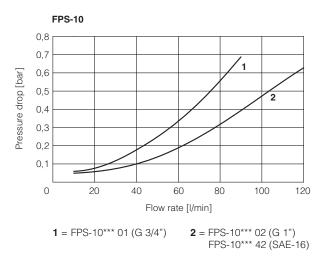
Seals, recommended fluid temperature	NBR seals (standard) = $-25^{\circ}C \div +100^{\circ}C$, with HFC hydraulic fluids = $+10^{\circ}C \div +50^{\circ}C$ FKM seals (/PE option) = $-25^{\circ}C \div +100^{\circ}C$									
Recommended viscosity	15 ÷ 100 mm²/s - max allowed range 2.8 ÷ 500 mm²/s									
Hydraulic fluid	Suitable seals type Classification Ref. Standard									
Mineral oils	NBR, FKM	HL, HLP, HLPD, HVLP, HVLPD	DIN 51524							
Flame resistant without water	FKM	HFDU, HFDR	ISO 12922							
Flame resistant with water	NBR HFC ISO 1292									

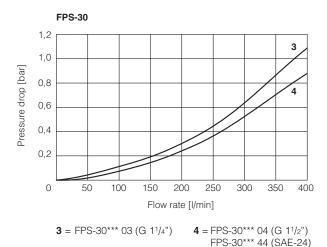
9 ELECTRICAL DIFFERENTIAL CLOGGING INDICATORS

Differential switching	CID-E05	5 bar ± 10% for filters with by-pass valve									
pressure	CID-E08	8 bar \pm 10% for filters without by-pass valve									
Max pressure 450 bar											
Max differential pressu	re	200 bar									
Electric connection	Electric connection Electric plug connection as per DIN 43650 with cable gland type PG7										
Dower oupply	CID-*-L	24 Vpc ± 10%									
Power supply CID-*-M		14 Vdc ÷ 30 Vdc	125 Vac ÷ 250 Vac								
Max current - resistive	(inductive)	5 A (4 A) ÷ 4 A (3 A)	5 A (3 A) ÷ 3 A (2 A)								
Fluid temperature		-25°C ÷ +100°C									
Protection degree to DIN	VEN 60529	P65 with mathing connector									
Hydraulic connection		M20x1,5									
Duty factor		100%									
Mechanical life		1 x 10 ⁶ operations									
Mass (Kg)		0,16									
Electric scheme		CID-*-L4(-) CID-*-M									
shown with switch posit	tion	G G G G G G G G G G G G G G G G G G G									
in case of clean filter el	ement	1 (+) 2 NC 1 C 2 NC									
1											

10 FILTERS SIZING

For the filter sizing it is necessary to consider the Total Δp at the maximum flow at which the filter must work. The Total Δp is given by the sum of filter head Δp plus the filter element Δp :


Total Δp = filter head Δp + filter element Δp


In the best conditions the total Δp should not exceed 1,0 bar See below sections to calculate the Δp of filter head and Δp of the filter element

10.1 Q/Ap DIAGRAMS OF FILTER HEAD

The pressure drop of filter head mainly depends on the ports size and fluid density

In the following diagrams are reported the Δp characteristics of filter head based on mineral oil with density 0,86 kg/dm³ and viscosity 30 mm²/s

10.2 FILTER ELEMENT Ap

The pressure drop through the filter depends to:

- size of filter element
- filtration rating
- fluid viscosity

The Δp of filter element is given by the formula:

$$\Delta p \text{ of filter element} = Q \ \times \ \frac{Gc}{1000} \ \times \ \frac{Viscosity}{30}$$

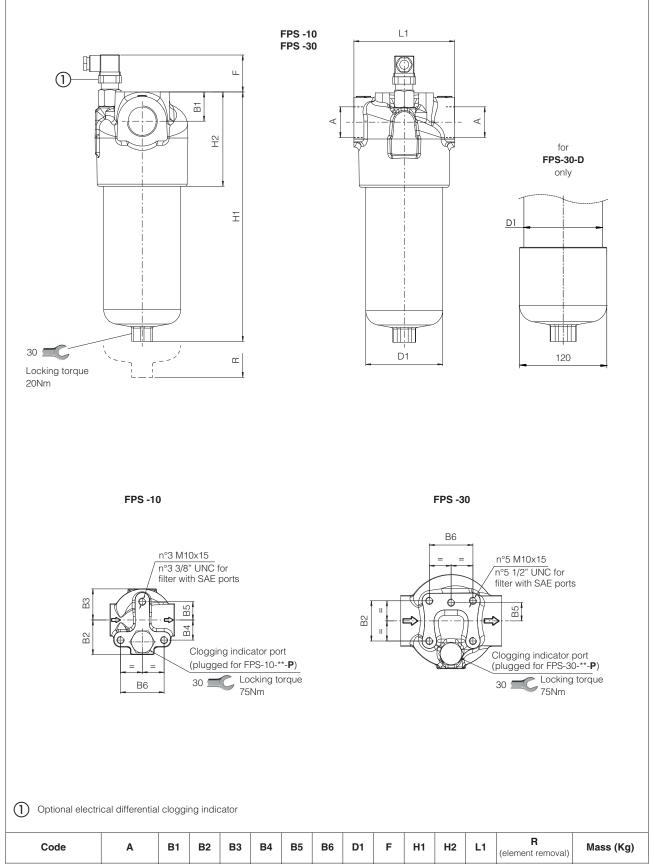
Q = working flow (l/min)

 $\mathbf{Gc} = \mathbf{Gradient} \ \mathbf{coefficient} \ \mathbf{(mbar/(l/min))}$. The Gc values are reported in the following table

Viscosity = effective fluid viscosity in the working conditions (mm²/s)

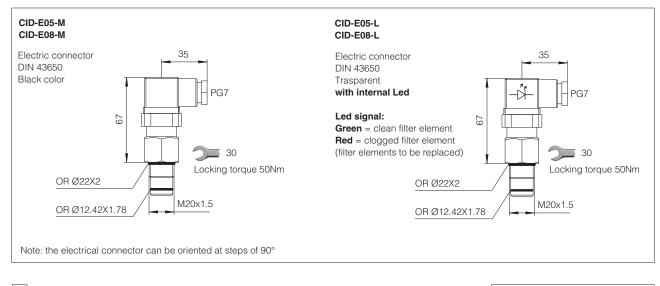
Gradient coefficent Gc of PSH filter elements

Filter eler	nent size	1	0	30					
Filter elem	ent lenght	Α	В	Α	В	С	D		
Filter element type	Filtration rating								
R	F03	27.75	15.25	14	7.13	4.7	3.62		
for filter with	F06	15.12	7.58	8.03	3.37	2.2	1.89		
bypass valve	F10	9.37	4.91	4.43	2.33	1.5	1.12		
N	F03	32.2	17.32	16.48	8.13	5.5	4.71		
for filter without	F06	22.38	9.41	11.88	4.18	3.28	2.91		
bypass valve	F10	11.2	6.27	5.27	3.45	2.36	2.15		


Example:

Calculation of Total Δp for filter type FPS-10-B-F10-02-R at Q = 80 l/min and viscosity 46 mm²/s (filter element PSH-10-B-F10-R) Δp of filter head = 0,31 bar

Gr = 4,91 mbar/(l/min)


Filter element
$$\Delta \mathbf{p} = 80 \times \frac{4,91}{1000} \times \frac{46}{30} = 0,60 \text{ bar}$$

Total $\Delta p = 0.31 + 0.60 = 0.91$ bar

FPS-10-A	3/4" BSPP 1" BSPP	22,5	47,5	43,5	27.5			70	70	200	92	90	110	3,5
FPS-10-B	SAE-16	22,0	.,0 47,0	40,0	21,5				10	293	92	30	110	4,5
FPS-30-A						25	60,6			248				9,0
FPS-30-B	1 1/4" BSPP 1 1/2 BSPP SAE-24		55	-	-	20	00,0	107	50	341	129	140	130	9,5
FPS-30-C			55						50	461	129	140		14,4
FPS-30-D										554				18,8

12 DIMENSIONS OF ELECTRICAL DIFFERENTIAL CLOGGING INDICATORS

13 INSTALLATION AND COMMISSIONING

The max operating pressure of the system must not exceed the max working pressure of the filter. During the filter installation, pay attention to respect the flow direction, shown by the arrow on the filter head. The filter should be preferably mounted with the bowl downward.

The filter head should be properly secured using the threaded fixing holes on the filter head.

Make sure that there is enough space for the replacement of the filter element.

Never run the system without the filter element.

For filters ordered with clogging indicator, code L or M:

• remove the plastic plug from the indicator port on the filter head

• install the clogging indicator and lock it at the specified torque

During the cold start up (fluid temperature lower than 30°C), a false clogging indicator signal can be given due to the high fluid viscosity.

14 MAINTENANCE

The filter element must be replaced as soon as the clogging indicator switches to highlight the filter clogged condition

For filters without clogging indicator, the filter element must be replaced according to the system manufacturer's recommendations.

Select the new filter element according to the model code reported on the filter nameplate, see section 14.1

For the replacement of the filter element, proceed as follow:

- releases the system pressure; the filter has no pressure bleeding device
- pay attention to the fluid and filter surface temperature. Always use suitable gloves and protection glasses
- \bullet unscrew the bowl (2) from the filter head (1) by turning counterclockwise (view from bottom side)
- \bullet remove the dirty filter element (3) pulling it carefully
- lubricate the seal of new filter element and insert it over the spigot in the filter head
- clean the bowl internally, lubricate the threads and screw by hand the bowl to the filter head by turning clockwise (view from bottom side). Tighten at the recommended torque.

WARNING: The dirty filter elements cannot be cleaned and re-used. They are classified as "dangerous waste material", then they must be disposed of by authorized Companies, according to the local laws.

14.1 FILTER IDENTIFICATION NAMEPLATE

- Model code of complete filter
- (2) Model code of filter element
- Max working pressure
- (4) Filter matrix code

